Multi-bit Decentralized Detection of a Non-cooperative Moving Target Through a Generalized Rao Test

Xu Cheng^{1,2}, Domenico Ciuonzo³, Pierluigi Salvo Rossi⁴, Xiaodong Wang⁵, Longfei Shi¹

¹CEMEE, National University of Defense Technology, China; ²Armed Police College of PAP, China;

³University of Naples "Federico II", Italy; ⁴NTNU, Norway; ⁵ECE, Columbia University, USA

{chengxu@nudt.edu.cn, domenico.ciuonzo@unina.it, salvorossi@ieee.org, wangx@ee.columbia.edu, longfei_shi@sina.com}

Abstract—We consider decentralized detection (DD) of an uncooperative moving target via wireless sensor networks (WSNs), measured in zero-mean unimodal noise. To address energy and bandwidth limitations, the sensors use multi-level quantizers. The encoded bits are then reported to a fusion center (FC) via binary symmetric channels. Herein, we propose a generalized Rao (G-Rao) test as a simpler alternative to the generalized likelihood ratio test (GLRT). Further, the asymptotic performance of a trajectory-clairvoyant (multi-bit) Rao test is leveraged to develop an offline and per-sensor quantizer design. Simulations show the appeal of G-Rao test with respect to the GLRT, and the gain in detection by using multiple bits for quantization.

Index Terms—Decentralized detection, Generalized Rao test, GLRT, multibit quantizer, wireless sensor networks.

I. INTRODUCTION

Wireless sensor networks (WSNs) have attracted significant interest due to their adoption in surveillance, environmental monitoring, smart cities, etc. Decentralized detection (DD) is one of the key tasks for a WSN; hence, scientific community has put significant effort in its study in last decades¹ [1]–[5].

Due to energy & bandwidth limitations, sensors are designed to *quantize* their measurements (into one or more bits), before sending them to a fusion center (FC) where a systemwide decision is taken [6], [7]. In this case, the optimal persensor design is a local likelihood-ratio (LR) quantization [8], [9], with corresponding selection of sensors' thresholds being a complex task [1], [2]. Thus the bit(s) sent either embodies the estimated binary event via a sub-optimal rule [10] (in onebit case) or results from a "dumb" quantization [11].

In both cases sensors' bits are sent to the FC, where they are fused via an intelligently-designed rule meant to overcome sensors' limited detection capabilities. Sadly, the target to be detected depends on some unknown parameters. This precludes (global) LR implementation at FC [2], which is then faced to test a composite hypothesis. A commonly-adopted fusion rule in such cases corresponds to the generalized LR test (GLRT) [12]–[14]. Yet, in a case of an unknown static (resp. moving) target with unknown location (resp. trajectory), the GLRT requires a grid search on both the target location (trajectory) and emitted signal domains; this motivates the search for simpler fusion rules.

Hence, recent works have devised a *generalized* Rao test for one-bit DD of uncooperative targets in finite-sample [15] and sequential [16] setups. Sadly, there is useful information lost when only one-bit quantizers are adopted and a notable performance gap can be observed w.r.t. unquantized observations [17]. Accordingly, *multi-level quantization* can be adopted to achieve performance gains at the expenses of a mild complexity increase. Based on this idea, multi-bit DD has been recently considered for the simpler scenario of an unknown signal in Gaussian noise [18], [19], where *multi-bit* GLR (*not in closed-form*) and Rao tests (*in closed-form*) have been devised and an asymptotically-optimal thresholds' design obtained, via a particle swarm optimization (PSO) [20].

Accordingly, herein we study DD of a non-cooperative moving target via WSNs [11], [12], [18], with sensors using multi-bit quantizers. Our model encompasses: (i) zero-mean unimodal-symmetric noise pdfs; (ii) quantized data sent to the FC over error-prone links (emulating energy-limited communications) modeled as binary symmetric channels (BSCs). The resulting test is two-sided with nuisance parameters present only under hypothesis \mathcal{H}_1 , thus making inapplicable the standard Rao test [21]. To circumvent this issue and capitalize multi-level measurements, we devise a multi-bit form of generalized Rao test (G-Rao), representing (i) a (computationally-) simpler alternative fusion rule to the GLRT and (ii) comprising the one-bit G-Rao devised in [15] as a special case. Also, we propose a quantizer design, based on asymptotic performance maximization of a trajectory-clairvoyant (TC) Rao test. Such design is per-sensor, accounts for sensor-FC channel status, and requires neither the target signal nor its trajectory, so it can be computed offline via PSO (following [18], [19]). Simulations compare both rules in a practical scenario².

¹Prof. Longfei Shi is the corresponding author of the paper.

²Notation - vectors are denoted with lower-case bold letters, with a_n being the *n*th element of a; finite sets are denoted with upper-case calligraphic letters, e.g. \mathcal{A} ; transpose and expectation are denoted with $(\cdot)^T$ and $\mathbb{E}\{\cdot\}$, respectively; probability mass functions (pmfs) and probability density functions (pdfs) are denoted with $P(\cdot)$ and $p(\cdot)$, respectively, while $P(\cdot|\cdot)$ and $p(\cdot|\cdot)$ their corresponding conditional counterparts; the complementary cumulative distribution function (ccdf) is denoted with $F(\cdot)$; the symbols ~ and $\stackrel{\sim}{\sim}$ mean "distributed as" and "asymptotically distributed as"; $\mathcal{N}(\mu, \sigma^2)$ denotes a Gaussian PDF with mean μ and variance σ^2 ; χ^2_k (resp. $\chi'_k^2(\xi)$) denotes a chi-square (resp. a non-central chi-square) pdf with k degrees of freedom (resp. and non-centrality parameter ξ).

II. PROBLEM STATEMENT

We consider a binary hypothesis test where a collection of sensors $k \in \mathcal{K} \triangleq \{1, \ldots, K\}$ are deployed to monitor the absence (\mathcal{H}_0) or presence (\mathcal{H}_1) of a target of interest having a partially-specified spatial signature. In the latter case (i.e. \mathcal{H}_1), the target moves along a fixed direction with constant velocity and continuously radiates an unknown deterministic isotropic signal θ . The emitted signal experiences distance-dependent path-loss and additive noise, before reaching individual sensors. The problem can be summarized as follows:

$$\begin{cases} \mathcal{H}_0: & m_k^t = w_k^t, \\ \mathcal{H}_1: & m_k^t = \theta g(\boldsymbol{x}^t, \boldsymbol{s}_k) + w_k^t; \\ t = 1, \dots, T \end{cases}$$
(1)

In Eq. (1), $m_k^t \in \mathbb{R}$ denotes the *k*th sensor measurement at instant *t* and $w_k^t \in \mathbb{R}$ indicates the noise random variable (RV). The RVs w_k^t are assumed (*a*) statistically independent over space (sensors) and (*b*) i.i.d. over time. In detail we assume each noise RV has $\mathbb{E}\{w_k^t\} = 0$ and *unimodal symmetric* pdf³ $p_{w_k}(\cdot)$. We underline that reliable estimation of the sensor noise pdf(s) can be achieved based on training data.

By denoting with $\mathbf{x}^0 \in \mathbb{R}^d$ and $\mathbf{v} \in \mathbb{R}^d$ the initial target location and the corresponding velocity, respectively, the target location at time t is given by the parametric expression $\mathbf{x}^t = \mathbf{x}^0 + \mathbf{v}t$. Herein, we make the reasonable assumption that both \mathbf{x}^0 and \mathbf{v} are unknown. On the other hand, $\mathbf{s}_k \in \mathbb{R}^d$ denotes the known kth sensor position, as a result of a sensor self-localization procedure. The pair $(\mathbf{x}^t, \mathbf{s}_k)$ uniquely determines the value of $g(\mathbf{x}^t, \mathbf{s}_k)$, here denoting the amplitude attenuation function (AAF)⁴, which models how the signal emitted from the target at t decays as it reaches kth sensor. For instance, when noise RVs are modelled as $w_k^t \sim \mathcal{N}(0, \sigma_{w,k}^2)$, the measurement m_k^t is distributed under \mathcal{H}_0 (resp. \mathcal{H}_1) as $m_k^t | \mathcal{H}_0 \sim \mathcal{N}(0, \sigma_{w,k}^2)$ (resp. $m_k^t | \mathcal{H}_1 \sim$ $\mathcal{N}(\theta g(\mathbf{x}^t, \mathbf{s}_k), \sigma_{w,k}^2))$. For compactness, we define the set of unknowns as $\boldsymbol{\xi} \triangleq \{\theta, \mathbf{x}^0, \mathbf{v}\}$.

By looking at Eq. (1) we observe that the test is *two-sided*, namely $\{\mathcal{H}_0, \mathcal{H}_1\}$ corresponds to $\{\theta = \theta_0, \theta \neq \theta_0\}$ ($\theta_0 = 0$). More important, the *unknown* target position x^t (equivalently the nuisance parameters $\{x^0, v\}$) can be estimated at the FC *only* when $\theta \neq \theta_0$, i.e. when the signal is present (\mathcal{H}_1) [21].

Then, to address bandwidth & energy limited budget in WSNs, we assume that the kth sensor employs a (multi-level) q(k)-bit quantizer⁵, in which the observation m_k^t is compared with a set of quantization thresholds $\{\tau_k(i)\}_{i=0}^{2^{q(k)}}$, determining $2^{q(k)}$ non-intersecting intervals covering the whole \mathbb{R} . Precisely, the corresponding quantizer outcome is mapped into a binary codeword $\boldsymbol{b}_k^t \in \{0,1\}^{q(k)}$, where $k = 1, 2, \ldots, K$. The quantization intervals are associated to q(k)-bit binary codewords, where $c_t(i) \in \{0,1\}$ and $\boldsymbol{c}(i) =$

 $[c_1(i) \cdots c_{q(k)}(i)]^T$. Hence, the q(k)-bit quantizer of kth sensor at instant t outputs a codeword defined as:

$$\boldsymbol{b}_{k}^{t} \triangleq \begin{cases} \boldsymbol{c}(1) & -\infty < m_{k}^{t} < \tau_{k}(1) \\ \boldsymbol{c}(2) & \tau_{k}(1) \le m_{k}^{t} < \tau_{k}(2) \\ \vdots & \vdots \\ \boldsymbol{c}(2^{q(k)}) & \tau_{k}(2^{q(k)} - 1) \le m_{k}^{t} < +\infty \end{cases}$$
(2)

The codeword of kth sensor is then reported to the FC via an error-prone channel link. The communication process of *each bit* is represented by an independent BSC with (known) biterror probability (BEP) $P_{e,k}$. A *distorted* codeword \boldsymbol{y}_k^t will be then received by the FC from kth sensor at time t, whose conditional probability obeys $P(\boldsymbol{y}_k^t = \boldsymbol{c}_k(i)|\boldsymbol{b}_k^t = \boldsymbol{c}_k(j)) = G_{q(k)}(P_{e,k}, d_{i,j})$, where

$$G_{q(k)}(P_{e,k}, d_{i,j}) \triangleq P_{e,k}^{d_{i,j}}(1 - P_{e,k})^{(q(k) - d_{i,j})}, \qquad (3)$$

and $d_{i,j} \triangleq d(\mathbf{c}_k(i), \mathbf{c}_k(j))$ denotes the Hamming distance between codewords $\mathbf{c}_k(i)$ and $\mathbf{c}_k(j)$. For notation compactness, we collect the noisy codewords (the soft-quantized measurements) received from the sensors at time t in the set $\mathcal{Y}^t \triangleq$ $\{ \mathbf{y}_1^t \cdots \mathbf{y}_K^t \}$ (recall that $\mathbf{y}_k^t \in \{0, 1\}^{q(k)}$ since codeword lengths may differ among sensors) and all the noisy codewords received from the WSN as $\mathcal{Y}^{1:T} \triangleq \{\mathcal{Y}^1, \cdots, \mathcal{Y}^T\}$. Accordingly, the pmf of all the observations, as a function of $\boldsymbol{\xi} =$ $\{\theta, \mathbf{x}^0, \mathbf{v}\}$ is given by $p(\mathcal{Y}^{1:T}; \boldsymbol{\xi}) = \prod_{t=1}^T \prod_{k=1}^K P(\mathbf{y}_k^t; \boldsymbol{\xi})$. The corresponding pmf of the contribution from kth sensor at time t can be expanded as

$$P(\boldsymbol{y}_k^t; \boldsymbol{\xi}) = \sum_{i=1}^{2^{q(k)}} P(\boldsymbol{y}_k^t | \boldsymbol{b}_k^t = \boldsymbol{c}(i)) P(\boldsymbol{b}_k^t = \boldsymbol{c}(i); \boldsymbol{\xi}) \quad (4)$$

The quantizer law reported in Eq. (2) implies the following pmf expression for $P(\boldsymbol{b}_k^t = \boldsymbol{c}(i); \boldsymbol{\xi})$

$$P(\boldsymbol{b}_{k}^{t} = \boldsymbol{c}(i); \boldsymbol{\xi}) = \Pr\{\tau_{k}(i-1) \leq m_{k}^{t} < \tau_{k}(i)\} = (5)$$

$$F_{w_{k}}(\tau_{k}(i-1) - \theta g(\boldsymbol{x}^{t}, \boldsymbol{s}_{k})) - F_{w_{k}}(\tau_{k}(i) - \theta g(\boldsymbol{x}^{t}, \boldsymbol{s}_{k}))$$

where $F_{w_k}(\cdot)$ denotes the ccdf of w_k^t .

After receiving $\mathcal{Y}^{1:T}$, the FC takes a global decision. The aim of this paper is the derivation of a (computationally) simple test (based on the statistic $\Lambda(\mathcal{Y}^{1:T})$) deciding for \mathcal{H}_1 (resp. \mathcal{H}_0) when the statistic is above (resp. below) the threshold γ , and the design of quantizers for the *whole* WSN.

III. FUSION RULES DESIGN

A widespread approach to handle composite hypothesis testing (viz. accounting for the presence of unknown parameters) resorts to the GLR [22]. For the DD problem at hand, the corresponding decision statistic is obtained by replacing the unknown parameters $\{\theta, x^0, v\}$ with their ML estimates $\{\hat{\theta}, \hat{x}^0, \hat{v}\}$ (under \mathcal{H}_1) in the log-LR, i.e.

$$\Lambda_{\rm G} \triangleq \ln \frac{p(\mathcal{Y}^{1:T}; \hat{\theta}, \hat{\boldsymbol{x}}^0, \hat{\boldsymbol{v}})}{p(\mathcal{Y}^{1:T}; \theta_0)} = \sum_{t=1}^T \sum_{k=1}^K \ln \frac{P(\boldsymbol{y}_k^t; \hat{\theta}, \hat{\boldsymbol{x}}^0, \hat{\boldsymbol{v}})}{P(\boldsymbol{y}_k^t; \theta_0)} \quad (6)$$

³Noteworthy examples of such pdfs are the Gaussian, Laplace, Cauchy and generalized Gaussian distributions with zero mean [22].

⁴We underline that our results apply to any suitably-defined AAF describing the spatial signature of the target to be detected.

⁵Herein, for simplicity, we focus on deterministic quantizers, leaving the more general case of probabilistic quantizers [23] to future studies.

where $\theta_0 = 0$ and $\{\hat{\theta}, \hat{x}^0, \hat{v}\}$ are the maximumlikelihood estimates (MLEs), namely $\{\hat{\theta}, \hat{x}^0, \hat{v}\} \triangleq$ $\arg \max_{\theta, x^0, v} p(\mathcal{Y}^{1:T}; \theta, x^0, v)$. Note that the MLEs of such unknown parameters do not possess a closed-form. As a result, searching for the solution $\{\hat{\theta}, \hat{x}^0, \hat{v}\}$ may require a *huge computational burden*.

Hence, inspired by the approach in [15], [16], the G-Rao test statistic is considered here. The typical Rao test is known to be asymptotically equivalent to the GLRT *in weak-signal condition*⁶, but with a lower computational complexity than the latter one. Referring to Eq. (1), if $\{x_0, v\}$ were known, the standard Rao test could be readily computed [22]. Sadly, the above terms are *unavailable* in our test. Still, leveraging Davies approach [21], a family of Rao test statistics can be calculated for different values of (x_0, v) . Then by maximizing such family of statistics (following a "GLRT-like" approach), the G-Rao test statistic can be expressed as

$$\Lambda_{\rm R} \triangleq \max_{\{\boldsymbol{x}^0, \boldsymbol{v}\}} \left(\frac{\partial \ln \left[p(\boldsymbol{\mathcal{Y}}^{1:T}; \boldsymbol{\xi}) \right]}{\partial \theta} \Big|_{\theta = \theta_0} \right)^2 / \operatorname{I} \left(\theta_0, \boldsymbol{x}^0, \boldsymbol{v} \right), \quad (7)$$

where I $(\theta_0, \boldsymbol{x}^0, \boldsymbol{v})$ denotes the *Fisher information* (FI) when $(\boldsymbol{x}_0, \boldsymbol{v})$ are known, i.e. I $(\theta, \boldsymbol{x}^0, \boldsymbol{v}) \triangleq \mathbb{E}\left\{\left(\frac{\partial \ln[p(\mathcal{Y}^{1:T}; \theta, \boldsymbol{x}^0, \boldsymbol{v})]}{\partial \theta}\right)^2\right\}$, and evaluated at θ_0 . Henceforth, we briefly describe the necessary steps for obtaining the G-Rao test in explicit form. First, we express the numerator term of Eq. (7) (before evaluating it at $\theta = \theta_0$) as

$$\left(\partial \ln \left[p(\mathcal{Y}^{1:T};\boldsymbol{\xi})\right]/\partial\theta\right)^2 = \tag{8}$$

$$\left(\sum_{t=1}^{T}\sum_{k=1}^{K}\frac{g\left(\boldsymbol{x}^{t},\boldsymbol{s}_{k}\right)\sum_{i=1}^{2^{q(k)}}P(\boldsymbol{y}_{k}^{t}|\boldsymbol{b}_{k}^{t}=\boldsymbol{c}(i))\rho(\boldsymbol{b}_{k}^{t}=\boldsymbol{c}(i);\boldsymbol{\xi})}{\sum_{i=1}^{2^{q(k)}}P(\boldsymbol{y}_{k}^{t}|\boldsymbol{b}_{k}^{t}=\boldsymbol{c}(i))P(\boldsymbol{b}_{k}^{t}=\boldsymbol{c}(i);\boldsymbol{\xi})}\right)$$

where the auxiliary definition $\rho(\boldsymbol{b}_k^t = \boldsymbol{c}(i); \boldsymbol{\xi}) \triangleq p_{w_k}(\tau_k(i-1) - \theta g(\boldsymbol{x}^t, \boldsymbol{s}_k)) - p_{w_k}(\tau_k(i) - \theta g(\boldsymbol{x}^t, \boldsymbol{s}_k))$ has been employed. Secondly, we obtain the explicit form of the FI leveraging the result for multi-bit quantized measurements in [19] when replacing h_k with $g(\boldsymbol{x}^t, \boldsymbol{x}_k)$. This leads to $I(\theta, \boldsymbol{x}^0, \boldsymbol{v}) = \sum_{k=1}^{K} i_k(\theta, \boldsymbol{x}^0, \boldsymbol{v})$, where:

$$\mathbf{i}_{k}(\theta, \boldsymbol{x}^{0}, \boldsymbol{v}) \triangleq \sum_{t=1}^{T} g^{2}(\boldsymbol{x}^{t}, \boldsymbol{s}_{k}) \times$$
(9)

$$\sum_{i=1}^{2^{q(k)}} \frac{\left\{\sum_{j=1}^{2^{q(k)}} G_{q(k)}\left(P_{e,k}, d_{i,j}\right) \rho\left(\boldsymbol{b}_{k}^{t} = \boldsymbol{c}\left(j\right); \boldsymbol{\xi}\right)\right\}^{2}}{\sum_{j=1}^{2^{q(k)}} G_{q(k)}\left(P_{e,k}, d_{i,j}\right) P\left(\boldsymbol{b}_{k}^{t} = \boldsymbol{c}\left(j\right); \boldsymbol{\xi}\right)}$$

⁶That is $|\theta_1 - \theta_0| = c/\sqrt{K}$ for some constant c > 0.

Last, we obtain the closed-form Λ_{R} by using both Eqs. (8)-(9):

$$\Lambda_{\rm R} = \max_{(\boldsymbol{x}^0, \boldsymbol{v})} \frac{1}{\mathrm{I}(\theta_0, \boldsymbol{x}^0, \boldsymbol{v})} \times$$
(10)

$$\left(\sum_{t=1}^{T}\sum_{k=1}^{K}\frac{g\left(\boldsymbol{x}^{t},\boldsymbol{s}_{k}\right)\sum_{i=1}^{2^{q(k)}}P(\boldsymbol{y}_{k}^{t}|\boldsymbol{b}_{k}^{t}=\boldsymbol{c}(i))\rho(\boldsymbol{b}_{k}^{t}=\boldsymbol{c}(i);\boldsymbol{\theta}_{0})}{\sum_{i=1}^{2^{q(k)}}P(\boldsymbol{y}_{k}^{t}|\boldsymbol{b}_{k}^{t}=\boldsymbol{c}(i))P(\boldsymbol{b}_{k}^{t}=\boldsymbol{c}(i);\boldsymbol{\theta}_{0})}\right)^{2}$$

Despite the seemingly evaluation difficulty, $\Lambda_{\rm R}$ can be more easily evaluated than Eq. (6), since G-Rao only requires a grid search on the initial location x^0 and velocity v (no need for estimating θ). Precisely, the *complexity* involved is $\mathcal{O}(N_{x^0}N_v T \sum_{k=1}^K 2^{q(k)})$ based on a 2-D grid, where N_{x^0} (resp. N_v) is the number of initial position (resp. velocity) bins used. Differently, $\mathcal{O}(N_\theta N_{x^0} N_v T \sum_{k=1}^K 2^{q(k)})$ is required for a 3-D grid-based GLR, with an N_θ -fold saving for G-Rao.

IV. QUANTIZER DESIGN

The same quantizer design as [19] is precluded in our case, as no (asymptotically-)optimal performance expressions of tests based on the Davies approach are known in the literature [21]. Still, we modify the rationale in [19] to come up with a reasonable and feasible design. With this aim, we first consider the TC Rao statistic $\bar{\Lambda}_{\rm R}$, which has the knowledge of $(\boldsymbol{x}^0, \boldsymbol{v})$ and obeys the following asymptotic⁷ pdf [19]:

$$\bar{\Lambda}_{\rm R} \stackrel{a}{\sim} \begin{cases} \chi_1^2 & \text{under } \mathcal{H}_0 \\ \chi_1^{'2}(\lambda_q(\boldsymbol{x}^0, \boldsymbol{v})) & \text{under } \mathcal{H}_1 \end{cases}$$
(11)

The above result also holds for the TC GLR. The term $\lambda_q(\boldsymbol{x}^0, \boldsymbol{v}) \triangleq \theta_1^2 I(\theta_0, \boldsymbol{x}^0, \boldsymbol{v})$, $(\theta_1$ is the true value when \mathcal{H}_1 holds) represents the TC non-centrality parameter vs. $(\boldsymbol{x}^0, \boldsymbol{v})$ (the larger, the better the performance of TC GLR/Rao test when the known target trajectory is described by $(\boldsymbol{x}^0, \boldsymbol{v})$).

Evidently, the non-centrality parameter λ_q grows monotonically with the FI evaluated at θ_0 . Such term depends on Kquantization threshold vectors (one per sensor), with kth vector being $\tau_k \triangleq [\tau_k(1), \ldots, \tau_k(2^{q(k)} - 1)]$, where the two extreme thresholds are fixed as $\tau_k(0) = -\infty$ and $\tau_k(2^{q(k)}) = +\infty$, respectively. Accordingly, we aim to optimize detection performance of the G-Rao detector (as well as GLRT) by solving the following maximization w.r.t. the τ_k 's:

$$\{\boldsymbol{\tau}_{k}^{\star}\}_{k=1}^{K} \triangleq \arg \max_{\{\boldsymbol{\tau}_{k}\}_{k=1}^{K}} \mathrm{I}\left(\boldsymbol{\theta}_{0}, \boldsymbol{x}^{0}, \boldsymbol{v}, \{\boldsymbol{\tau}_{k}\}_{k=1}^{K}\right)$$
(12)

where the dependence of the FI on the τ_k 's has been highlighted, with a slight abuse of notation. In general, this (TC) procedure would lead to impractical $\tau_k^{\star *}$'s, namely depending on $(\boldsymbol{x}^0, \boldsymbol{v})$. Still, for our task, the objective admits a *decoupling* into a set of K separate threshold design problems. What's more, each problem is also *independent* of $(\boldsymbol{x}^0, \boldsymbol{v})$, namely:

$$\boldsymbol{\tau}_{k}^{\star} \triangleq \arg \max_{\boldsymbol{\tau}_{k}} i_{k}(\theta_{0}; \boldsymbol{\tau}_{k}), \quad k = 1, \dots, K$$
 (13)

⁷Herein, the term "asymptotic" refers both to large-WSN and weak-signal conditions.

We highlight that each maximization is subject to the ordered constraints $\tau_k(i) < \tau_k(i+1)$, for $i = 1, ..., 2^{q(k)} - 1$. Remarkably, the problem in (13) has the same form as [18], [19], resulting from optimization of Rao (GLR) test performance in a *simpler* unknown signal scenario. Thus, we adopt the method adopted therein, i.e. the PSO, to search each τ_k^* via (13), due to its appeal with high-dimensional and non-convex spaces⁸.

Briefly, PSO is an optimization method [20] resorting to a swarm of m = 1, 2, ..., M particles to explore⁹ the $(2^q - 1)$ -dimensional space (constrained in each dimension as $\tau(i) \in \{-\tau_{max}, \tau_{max}\}$) in search of a global maximum for each problem in Eq. (13). At ℓ th iteration, the *m*th particle is characterized by its position τ_m^ℓ (i.e. the objective argument) and velocity vectors ν_m^ℓ (i.e. the improvement direction). The PSO state is summarized by the swarm best position $(sbest^\ell)$, as well as the best individual position achieved by *m*th particle so far $(pbest_m^\ell)$. At $(\ell + 1)$ th step, both terms contribute to update each particle velocity $\nu_m^{\ell+1}$ and, indirectly, its position (via $\tau_m^{\ell+1} = \tau_m^\ell + \nu_m^{\ell+1})$. PSO ends when all the particles' velocities (in magnitude) are less than a preset value $\leq \nu_{tol}$.

V. NUMERICAL RESULTS

Herein, we compare multi-bit G-Rao test and GLRT performance in terms of system false alarm $(P_{F_0} \triangleq \Pr\{\Lambda > \gamma | \mathcal{H}_0\})$ and detection probabilities $(P_{D_0} \triangleq \Pr\{\Lambda > \gamma | \mathcal{H}_1\})$. To this end, we consider a 2-D space $(\boldsymbol{x}_T \in \mathbb{R}^2)$ where a WSN of size K = 9 is deployed to reveal the presence of an unknown moving target with its initial position located in the (square) surveillance area $\mathcal{L} \triangleq [0, 1]^2$ and moving with velocity within $\mathcal{V} \triangleq [-0.1, 0.1]^2$. W.l.o.g., sensors are displaced in a regular grid covering \mathcal{L} . Concerning the sensing model, we assume $w_k \sim \mathcal{N}\left(0, \sigma_w^2\right), \ k \in \mathcal{K}$, with $\sigma_w^2 = 1$. Also, we consider a power-law AAF $g(\boldsymbol{x}_T, \boldsymbol{s}_k) \triangleq 1/\sqrt{1 + (\|\boldsymbol{x}_T - \boldsymbol{s}_k\|/0.2)^4}$. The target signal-to-noise ratio (SNR) is defined as SNR $\triangleq \theta^2/\sigma_w^2$. Herein, we set the *true* values as $\theta = 0.5$ (SNR = -3 dB), $\boldsymbol{x}_0 = [0, 0.5]^T$, $\boldsymbol{v} = [0.02, 0.013]^T$ and T = 20 in the simulations to gain insight into detectors' performance.

Following Sec. III, $\Lambda_{\rm R}$ and $\Lambda_{\rm G}$ are evaluated by means of grids for x_0 , v and θ . Precisely, x_0 and v are searched with $N_{x^0} = N_v = 100$ grid points uniformly sampling \mathcal{L} and \mathcal{V} , respectively. Differently, the search space of θ (the target signal) is assumed to be $S_{\theta} \triangleq [-\bar{\theta}, \bar{\theta}] (\bar{\theta} > 0)$. The grid points¹⁰ are then chosen as $[-g_{\theta}^T \ 0 \ g_{\theta}^T]^T$, where g_{θ} collects target strengths corresponding to SNR = -10: 1: 10 dB.

In Fig. 1 we show P_{D_0} vs. P_{F_0} of both G-Rao and GLRT detectors for (a) $P_{e,k} = P_e = 0$ and (b) $P_{e,k} = P_e = 0.1$, respectively (based on 10^5 Monte Carlo trials). For each case, we report the performance with $q_k = q \in \{1, 2, 3\}$ quantization bits, where thresholds are selected following the rationale elaborated in Sec. IV (via PSO, with parameters M = 100, $\tau_{max} = 5$ and $\nu_{tol} = 10^{-6}$). First, it is shown

Fig. 1. P_{D_0} vs. P_{F_0} for GLRT and G-Rao; WSN with K = 9 sensors, $w_k \sim \mathcal{N}(0, 1)$, SNR = $-3 \,\mathrm{dB}$, and (a): $P_e = 0$; (b): $P_e = 0.1$.

that the performance of the proposed G-Rao test is practically the same as the GLRT, while having the advantage of a lower computational burden with respect to the latter. Secondly, both fusion rules enjoy a higher detection probability (than the onebit case) when using multi-bit quantizers.

Still, the presence of channel errors (in our example $P_e = 0.1$) leads to a significant performance loss of both detectors, highlighting the need for either a higher number of sensors (K) or a longer observation interval (T). A deeper numerical analysis will be brought out in the journal version of this paper.

VI. CONCLUDING REMARKS

We devised a G-Rao test for multi-bit DD of a noncooperative moving target in WSNs. The considered model encompasses unimodal zero-mean symmetric noise, and nonidentical BSCs. Our proposal constitutes a simpler alternative to the GLRT, while providing the same performance gains achieved via multi-bit quantization (over a one-bit counterpart). WSN performance was further optimized via the design of PSO-based quantizers, maximizing the asymptotic detection rate of TC Rao rule. Future avenues include the design of G-Rao test for sequential [16] and censoring [24] setups.

⁸We remark that other approaches may be pursued, e.g. simulated annealing. ⁹Hereinafter, aiming at improved notation readability, we will omit the sensor index subscript "k".

¹⁰This grid implies $N_{\theta} = 43$, hence a $43 \times$ complexity saving is achieved by G-Rao w.r.t. GLR.

REFERENCES

- J. N. Tsitsiklis, "Decentralized detection," Advances in Statistical Signal Processing, vol. 2, no. 2, pp. 297–344, 1993.
- [2] R. Viswanathan and P. K. Varshney, "Distributed detection with multiple sensors - Part I: Fundamentals," *Proc. IEEE*, vol. 85, no. 1, pp. 54–63, Jan. 1997.
- [3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," *IEEE Commun. Mag.*, vol. 40, no. 8, pp. 102–114, Aug 2002.
- [4] T. Wu and Q. Cheng, "Distributed estimation over fading channels using one-bit quantization," *IEEE Trans. Wireless Commun.*, vol. 8, no. 12, pp. 5779–5784, 2009.
- [5] D. Ciuonzo and P. Salvo Rossi, "Quantizer design for generalized locally optimum detectors in wireless sensor networks," *IEEE Wireless Commun. Lett.*, vol. 7, no. 2, pp. 162–165, April 2018.
- [6] J. Fang and H. Li, "Distributed estimation of Gauss-Markov random fields with one-bit quantized data," *IEEE Signal Process. Lett.*, vol. 17, no. 5, pp. 449–452, May 2010.
- [7] D. Ciuonzo, G. Romano, and P. Salvo Rossi, "Optimality of received energy in decision fusion over Rayleigh fading diversity MAC with nonidentical sensors," *IEEE Trans. Signal Process.*, vol. 61, no. 1, pp. 22–27, Jan. 2013.
- [8] A. R. Reibman and L. L. W. Nolte, "Optimal detection and performance of distributed sensor systems," *IEEE Trans. Aerosp. Electron. Syst.*, no. 1, pp. 24–30, 1987.
- [9] I. Y. Hoballah and P. K. Varshney, "Distributed Bayesian signal detection," *IEEE Trans. Inf. Theory*, vol. 35, no. 5, pp. 995–1000, 1989.
- [10] D. Ciuonzo and P. Salvo Rossi, "Decision fusion with unknown sensor detection probability," *IEEE Signal Process. Lett.*, vol. 21, no. 2, pp. 208–212, 2014.
- [11] D. Ciuonzo, G. Papa, G. Romano, P. Salvo Rossi, and P. Willett, "One-bit decentralized detection with a Rao test for multisensor fusion," *IEEE Signal Process. Lett.*, vol. 20, no. 9, pp. 861–864, Sept 2013.
 [12] J. Fang, Y. Liu, H. Li, and S. Li, "One-bit quantizer design for
- [12] J. Fang, Y. Liu, H. Li, and S. Li, "One-bit quantizer design for multisensor GLRT fusion," *IEEE Signal Process. Lett.*, vol. 20, no. 3, pp. 257–260, Mar. 2013.
- [13] R. Niu, P. K. Varshney, and Q. Cheng, "Distributed detection in a large wireless sensor network," *Information Fusion*, vol. 7, no. 4, pp. 380–394, 2006.
- [14] A. Shoari and A. Seyedi, "Detection of a non-cooperative transmitter in rayleigh fading with binary observations," in *IEEE Military Communications Conference (MILCOM)*, 2012, pp. 1–5.
- [15] D. Ciuonzo, P. Salvo Rossi, and P. Willett, "Generalized Rao test for decentralized detection of an uncooperative target," *IEEE Signal Process. Lett.*, vol. 24, no. 5, pp. 678–682, 2017.
- [16] L. Hu, J. Zhang, X. Wang, S. Wang, and E. Zhang, "Decentralized truncated one-sided sequential detection of a non-cooperative moving target," *IEEE Signal Process. Lett.*, vol. 25, no. 10, pp. 1490–1494, Oct. 2018.
- [17] D. Ciuonzo and P. Salvo Rossi, "Distributed detection of a noncooperative target via generalized locally-optimum approaches," *Information Fusion*, vol. 36, pp. 261–274, 2017.
- [18] F. Gao, L. Guo, H. Li, J. Liu, and J. Fang, "Quantizer design for distributed GLRT detection of weak signal in wireless sensor networks," *IEEE Trans. Wireless Commun.*, vol. 14, no. 4, pp. 2032–2042, April 2015.
- [19] X. Cheng, D. Ciuonzo, and P. Salvo Rossi, "Multi-bit decentralized detection through fusing smart & dumb sensors based on Rao test," *IEEE Trans. Aerosp. Elect. Syst. (Early Access)*, Aug. 2019.
- [20] A. Ismael F. Vaz and L. N. Vicente, "A particle swarm pattern search method for bound constrained global optimization," *Journal of Global Optimization*, vol. 39, no. 2, pp. 197–219, 2007.
- [21] R. D. Davies, "Hypothesis testing when a nuisance parameter is present only under the alternative," *Biometrika*, vol. 74, no. 1, pp. 33–43, 1987.
- [22] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory. Prentice Hall PTR, Jan. 1998.
- [23] S. Kar, H. Chen, and P. K. Varshney, "Optimal identical binary quantizer design for distributed estimation," *IEEE Trans. Signal Process.*, vol. 60, no. 7, pp. 3896–3901, 2012.
- [24] C. Rago, P. Willett, and Y. Bar-Shalom, "Censoring sensors: a lowcommunication-rate scheme for distributed detection," *IEEE Trans. Aerosp. Electron. Syst.*, vol. 32, no. 2, pp. 554–568, April 1996.