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Abstract—We consider decentralized detection (DD) of an un-
cooperative moving target via wireless sensor networks (WSNs),
measured in zero-mean unimodal noise. To address energy and
bandwidth limitations, the sensors use multi-level quantizers. The
encoded bits are then reported to a fusion center (FC) via binary
symmetric channels. Herein, we propose a generalized Rao (G-
Rao) test as a simpler alternative to the generalized likelihood
ratio test (GLRT). Further, the asymptotic performance of a
trajectory-clairvoyant (multi-bit) Rao test is leveraged to develop
an offline and per-sensor quantizer design. Simulations show the
appeal of G-Rao test with respect to the GLRT, and the gain in
detection by using multiple bits for quantization.

Index Terms—Decentralized detection, Generalized Rao test,
GLRT, multibit quantizer, wireless sensor networks.

I. INTRODUCTION

Wireless sensor networks (WSNs) have attracted significant
interest due to their adoption in surveillance, environmental
monitoring, smart cities, etc. Decentralized detection (DD) is
one of the key tasks for a WSN; hence, scientific community
has put significant effort in its study in last decades1 [1]–[5].

Due to energy & bandwidth limitations, sensors are de-
signed to quantize their measurements (into one or more bits),
before sending them to a fusion center (FC) where a system-
wide decision is taken [6], [7]. In this case, the optimal per-
sensor design is a local likelihood-ratio (LR) quantization [8],
[9], with corresponding selection of sensors’ thresholds being
a complex task [1], [2]. Thus the bit(s) sent either embodies
the estimated binary event via a sub-optimal rule [10] (in one-
bit case) or results from a “dumb” quantization [11].

In both cases sensors’ bits are sent to the FC, where they
are fused via an intelligently-designed rule meant to overcome
sensors’ limited detection capabilities. Sadly, the target to
be detected depends on some unknown parameters. This
precludes (global) LR implementation at FC [2], which is then
faced to test a composite hypothesis. A commonly-adopted
fusion rule in such cases corresponds to the generalized LR
test (GLRT) [12]–[14]. Yet, in a case of an unknown static
(resp. moving) target with unknown location (resp. trajectory),
the GLRT requires a grid search on both the target location
(trajectory) and emitted signal domains; this motivates the
search for simpler fusion rules.

1Prof. Longfei Shi is the corresponding author of the paper.

Hence, recent works have devised a generalized Rao test
for one-bit DD of uncooperative targets in finite-sample [15]
and sequential [16] setups. Sadly, there is useful informa-
tion lost when only one-bit quantizers are adopted and a
notable performance gap can be observed w.r.t. unquantized
observations [17]. Accordingly, multi-level quantization can
be adopted to achieve performance gains at the expenses of
a mild complexity increase. Based on this idea, multi-bit DD
has been recently considered for the simpler scenario of an
unknown signal in Gaussian noise [18], [19], where multi-bit
GLR (not in closed-form) and Rao tests (in closed-form) have
been devised and an asymptotically-optimal thresholds’ design
obtained, via a particle swarm optimization (PSO) [20].

Accordingly, herein we study DD of a non-cooperative
moving target via WSNs [11], [12], [18], with sensors using
multi-bit quantizers. Our model encompasses: (i) zero-mean
unimodal-symmetric noise pdfs; (ii) quantized data sent to the
FC over error-prone links (emulating energy-limited communi-
cations) modeled as binary symmetric channels (BSCs). The
resulting test is two-sided with nuisance parameters present
only under hypothesis H1, thus making inapplicable the stan-
dard Rao test [21]. To circumvent this issue and capitalize
multi-level measurements, we devise a multi-bit form of gener-
alized Rao test (G-Rao), representing (i) a (computationally-)
simpler alternative fusion rule to the GLRT and (ii) comprising
the one-bit G-Rao devised in [15] as a special case. Also, we
propose a quantizer design, based on asymptotic performance
maximization of a trajectory-clairvoyant (TC) Rao test. Such
design is per-sensor, accounts for sensor-FC channel status,
and requires neither the target signal nor its trajectory, so
it can be computed offline via PSO (following [18], [19]).
Simulations compare both rules in a practical scenario2.

2Notation - vectors are denoted with lower-case bold letters, with an being
the nth element of a; finite sets are denoted with upper-case calligraphic
letters, e.g. A; transpose and expectation are denoted with (·)T and E{·}, re-
spectively; probability mass functions (pmfs) and probability density functions
(pdfs) are denoted with P (·) and p(·), respectively, while P (·|·) and p(·|·)
their corresponding conditional counterparts; the complementary cumulative
distribution function (ccdf) is denoted with F (·); the symbols ∼ and a∼
mean “distributed as” and “asymptotically distributed as”; N (µ, σ2) denotes
a Gaussian PDF with mean µ and variance σ2; χ2

k (resp. χ
′2
k (ξ)) denotes

a chi-square (resp. a non-central chi-square) pdf with k degrees of freedom
(resp. and non-centrality parameter ξ).
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II. PROBLEM STATEMENT

We consider a binary hypothesis test where a collection of
sensors k ∈ K , {1, . . . ,K} are deployed to monitor the
absence (H0) or presence (H1) of a target of interest having a
partially-specified spatial signature. In the latter case (i.e. H1),
the target moves along a fixed direction with constant velocity
and continuously radiates an unknown deterministic isotropic
signal θ. The emitted signal experiences distance-dependent
path-loss and additive noise, before reaching individual sen-
sors. The problem can be summarized as follows:{

H0 : mt
k = wtk,

H1 : mt
k = θ g(xt, sk) + wtk

;
k ∈ K,

t = 1, . . . , T
(1)

In Eq. (1), mt
k ∈ R denotes the kth sensor measurement at

instant t and wtk ∈ R indicates the noise random variable (RV).
The RVs wtk are assumed (a) statistically independent over
space (sensors) and (b) i.i.d. over time. In detail we assume
each noise RV has E{wtk} = 0 and unimodal symmetric pdf3

pwk
(·). We underline that reliable estimation of the sensor

noise pdf(s) can be achieved based on training data.
By denoting with x0 ∈ Rd and v ∈ Rd the initial

target location and the corresponding velocity, respectively,
the target location at time t is given by the parametric
expression xt = x0 + vt. Herein, we make the reasonable
assumption that both x0 and v are unknown. On the other
hand, sk ∈ Rd denotes the known kth sensor position, as a
result of a sensor self-localization procedure. The pair (xt, sk)
uniquely determines the value of g(xt, sk), here denoting the
amplitude attenuation function (AAF)4, which models how
the signal emitted from the target at t decays as it reaches
kth sensor. For instance, when noise RVs are modelled as
wtk ∼ N (0, σ2

w,k), the measurement mt
k is distributed under

H0 (resp. H1) as mt
k |H0 ∼ N (0, σ2

w,k) (resp. mt
k |H1 ∼

N (θ g(xt, sk), σ2
w,k)). For compactness, we define the set of

unknowns as ξ , {θ,x0,v}.
By looking at Eq. (1) we observe that the test is two-sided,

namely {H0,H1} corresponds to {θ = θ0, θ 6= θ0} (θ0 = 0).
More important, the unknown target position xt (equivalently
the nuisance parameters {x0,v}) can be estimated at the FC
only when θ 6= θ0, i.e. when the signal is present (H1) [21].

Then, to address bandwidth & energy limited budget in
WSNs, we assume that the kth sensor employs a (multi-level)
q(k)-bit quantizer5, in which the observation mt

k is compared
with a set of quantization thresholds {τk(i)}2q(k)

i=0 , determin-
ing 2q(k) non-intersecting intervals covering the whole R.
Precisely, the corresponding quantizer outcome is mapped
into a binary codeword btk ∈ {0, 1}q(k), where k =
1, 2, . . . ,K. The quantization intervals are associated to q(k)-
bit binary codewords, where ct(i) ∈ {0, 1} and c(i) =

3Noteworthy examples of such pdfs are the Gaussian, Laplace, Cauchy and
generalized Gaussian distributions with zero mean [22].

4We underline that our results apply to any suitably-defined AAF describing
the spatial signature of the target to be detected.

5Herein, for simplicity, we focus on deterministic quantizers, leaving the
more general case of probabilistic quantizers [23] to future studies.

[
c1(i) · · · cq(k)(i)

]T
. Hence, the q(k)-bit quantizer of kth

sensor at instant t outputs a codeword defined as:

btk ,


c(1) −∞ < mt

k < τk(1)

c(2) τk(1) ≤ mt
k < τk(2)

...
...

c(2q(k)) τk(2q(k) − 1) ≤ mt
k < +∞

(2)

The codeword of kth sensor is then reported to the FC via an
error-prone channel link. The communication process of each
bit is represented by an independent BSC with (known) bit-
error probability (BEP) Pe,k. A distorted codeword ytk will
be then received by the FC from kth sensor at time t, whose
conditional probability obeys P (ytk = ck(i)|btk = ck(j)) =
Gq(k) (Pe,k, di,j), where

Gq(k) (Pe,k, di,j) , P
di,j
e,k (1− Pe,k)(q(k)−di,j), (3)

and di,j , d(ck(i), ck(j)) denotes the Hamming distance be-
tween codewords ck(i) and ck(j). For notation compactness,
we collect the noisy codewords (the soft-quantized measure-
ments) received from the sensors at time t in the set Yt ,
{ yt1 · · · ytK} (recall that ytk ∈ {0, 1}q(k) since codeword
lengths may differ among sensors) and all the noisy codewords
received from the WSN as Y1:T , {Y1, · · · ,YT }. Accord-
ingly, the pmf of all the observations, as a function of ξ =
{θ,x0,v} is given by p(Y1:T ; ξ) =

∏T
t=1

∏K
k=1 P (ytk; ξ).

The corresponding pmf of the contribution from kth sensor
at time t can be expanded as

P (ytk; ξ) =

2q(k)∑
i=1

P (ytk|btk = c(i))P (btk = c(i); ξ) (4)

The quantizer law reported in Eq. (2) implies the following
pmf expression for P (btk = c(i); ξ)

P (btk = c(i); ξ) = Pr{τk(i− 1) ≤ mt
k < τk(i)} = (5)

Fwk
(τk(i− 1)− θ g(xt, sk))− Fwk

(τk(i)− θ g(xt, sk))

where Fwk
(·) denotes the ccdf of wtk.

After receiving Y1:T , the FC takes a global decision. The
aim of this paper is the derivation of a (computationally)
simple test (based on the statistic Λ(Y1:T )) deciding for
H1 (resp. H0) when the statistic is above (resp. below) the
threshold γ, and the design of quantizers for the whole WSN.

III. FUSION RULES DESIGN

A widespread approach to handle composite hypothesis
testing (viz. accounting for the presence of unknown param-
eters) resorts to the GLR [22]. For the DD problem at hand,
the corresponding decision statistic is obtained by replacing
the unknown parameters {θ,x0,v} with their ML estimates
{θ̂, x̂0, v̂} (under H1) in the log-LR, i.e.

ΛG , ln
p(Y1:T ; θ̂, x̂0, v̂)

p(Y1:T ; θ0)
=

T∑
t=1

K∑
k=1

ln
P (ytk; θ̂, x̂0, v̂)

P (ytk; θ0)
(6)
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where θ0 = 0 and {θ̂, x̂0, v̂} are the maximum-
likelihood estimates (MLEs), namely {θ̂, x̂0, v̂} ,
arg maxθ,x0,v p(Y1:T ; θ,x0,v). Note that the MLEs of
such unknown parameters do not possess a closed-form. As
a result, searching for the solution {θ̂, x̂0, v̂} may require a
huge computational burden.

Hence, inspired by the approach in [15], [16], the G-Rao
test statistic is considered here. The typical Rao test is known
to be asymptotically equivalent to the GLRT in weak-signal
condition6, but with a lower computational complexity than
the latter one. Referring to Eq. (1), if {x0,v} were known,
the standard Rao test could be readily computed [22]. Sadly,
the above terms are unavailable in our test. Still, leveraging
Davies approach [21], a family of Rao test statistics can be
calculated for different values of (x0,v). Then by maximizing
such family of statistics (following a “GLRT-like” approach),
the G-Rao test statistic can be expressed as

ΛR , max
{x0,v}

(
∂ ln

[
p(Y1:T ; ξ)

]
∂θ

∣∣∣
θ=θ0

)2

/ I
(
θ0,x

0,v
)
, (7)

where I
(
θ0,x

0,v
)

denotes the Fisher information
(FI) when (x0,v) are known, i.e. I

(
θ,x0,v

)
,

E
{(

∂ ln[p(Y1:T ;θ,x0,v)]
∂θ

)2 }
, and evaluated at θ0. Henceforth,

we briefly describe the necessary steps for obtaining the
G-Rao test in explicit form. First, we express the numerator
term of Eq. (7) (before evaluating it at θ = θ0) as

(
∂ ln

[
p(Y1:T ; ξ)

]
/∂θ

)2
= (8)

T∑
t=1

K∑
k=1

g (xt, sk)
2q(k)∑
i=1

P (ytk|btk = c(i)) ρ(btk = c(i); ξ)

2q(k)∑
i=1

P (ytk|btk = c(i))P (btk = c(i); ξ)


2

where the auxiliary definition ρ(btk = c(i); ξ) ,
pwk

(τk(i− 1)− θg(xt, sk)) − pwk
(τk(i)− θg(xt, sk)) has

been employed. Secondly, we obtain the explicit form of the
FI leveraging the result for multi-bit quantized measurements
in [19] when replacing hk with g (xt,xk). This leads to
I(θ,x0,v) =

∑K
k=1 ik(θ,x0,v), where:

ik(θ,x0,v) ,
T∑
t=1

g2
(
xt, sk

)
× (9)

2q(k)∑
i=1

{ 2q(k)∑
j=1

Gq(k) (Pe,k, di,j) ρ (btk = c (j) ; ξ)
}2

2q(k)∑
j=1

Gq(k) (Pe,k, di,j)P (btk = c (j) ; ξ)

6That is |θ1 − θ0| = c/
√
K for some constant c > 0.

Last, we obtain the closed-form ΛR by using both Eqs. (8)-(9):

ΛR = max
(x0,v)

1

I (θ0,x0,v)
× (10)

T∑
t=1

K∑
k=1

g (xt, sk)
2q(k)∑
i=1

P (ytk|btk = c(i)) ρ(btk = c(i); θ0)

2q(k)∑
i=1

P (ytk|btk = c(i))P (btk = c(i); θ0)


2

Despite the seemingly evaluation difficulty, ΛR can be more
easily evaluated than Eq. (6), since G-Rao only requires a
grid search on the initial location x0 and velocity v (no
need for estimating θ). Precisely, the complexity involved is
O(Nx0Nv T

∑K
k=1 2q(k)) based on a 2-D grid, where Nx0

(resp. Nv) is the number of initial position (resp. velocity) bins
used. Differently, O(NθNx0Nv T

∑K
k=1 2q(k)) is required for

a 3-D grid-based GLR, with an Nθ-fold saving for G-Rao.

IV. QUANTIZER DESIGN

The same quantizer design as [19] is precluded in our case,
as no (asymptotically-)optimal performance expressions of
tests based on the Davies approach are known in the literature
[21]. Still, we modify the rationale in [19] to come up with a
reasonable and feasible design. With this aim, we first consider
the TC Rao statistic Λ̄R, which has the knowledge of (x0,v)
and obeys the following asymptotic7 pdf [19]:

Λ̄R
a∼

{
χ2
1 under H0

χ
′2
1 (λq(x

0,v)) under H1

(11)

The above result also holds for the TC GLR. The term
λq(x

0,v) , θ21 I(θ0,x
0,v) , (θ1 is the true value when H1

holds) represents the TC non-centrality parameter vs. (x0,v)
(the larger, the better the performance of TC GLR/Rao test
when the known target trajectory is described by (x0,v)).

Evidently, the non-centrality parameter λq grows monoton-
ically with the FI evaluated at θ0. Such term depends on K
quantization threshold vectors (one per sensor), with kth vector
being τk ,

[
τk(1), . . . , τk(2q(k) − 1)

]
, where the two extreme

thresholds are fixed as τk(0) = −∞ and τk(2q(k)) = +∞,
respectively. Accordingly, we aim to optimize detection per-
formance of the G-Rao detector (as well as GLRT) by solving
the following maximization w.r.t. the τk’s:

{τ ?k }Kk=1 , arg max
{τk}Kk=1

I
(
θ0,x

0,v, {τk}Kk=1

)
(12)

where the dependence of the FI on the τk’s has been high-
lighted, with a slight abuse of notation. In general, this (TC)
procedure would lead to impractical τ ?k ’s, namely depending
on (x0,v). Still, for our task, the objective admits a decoupling
into a set of K separate threshold design problems. What’s
more, each problem is also independent of (x0,v), namely:

τ ?k , arg max
τk

ik(θ0; τk), k = 1, . . . ,K (13)

7Herein, the term “asymptotic” refers both to large-WSN and weak-signal
conditions.
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We highlight that each maximization is subject to the ordered
constraints τk(i) < τk(i+1), for i = 1, . . . 2q(k)−1. Remark-
ably, the problem in (13) has the same form as [18], [19],
resulting from optimization of Rao (GLR) test performance in
a simpler unknown signal scenario. Thus, we adopt the method
adopted therein, i.e. the PSO, to search each τ ?k via (13), due
to its appeal with high-dimensional and non-convex spaces8.

Briefly, PSO is an optimization method [20] resorting to
a swarm of m = 1, 2, . . . ,M particles to explore9 the
(2q − 1)-dimensional space (constrained in each dimension as
τ(i) ∈ {−τmax, τmax}) in search of a global maximum for
each problem in Eq. (13). At `th iteration, the mth particle is
characterized by its position τ `m (i.e. the objective argument)
and velocity vectors ν`m (i.e. the improvement direction). The
PSO state is summarized by the swarm best position (sbest`),
as well as the best individual position achieved by mth particle
so far (pbest`m). At (` + 1)th step, both terms contribute to
update each particle velocity ν`+1

m and, indirectly, its position
(via τ `+1

m = τ `m + ν`+1
m ). PSO ends when all the particles’

velocities (in magnitude) are less than a preset value ≤ νtol.

V. NUMERICAL RESULTS

Herein, we compare multi-bit G-Rao test and GLRT perfor-
mance in terms of system false alarm (PF0

, Pr{Λ > γ|H0})
and detection probabilities (PD0

, Pr{Λ > γ|H1}). To this
end, we consider a 2-D space (xT ∈ R2) where a WSN of
size K = 9 is deployed to reveal the presence of an unknown
moving target with its initial position located in the (square)
surveillance area L , [0, 1]2 and moving with velocity within
V , [−0.1, 0.1]2. W.l.o.g., sensors are displaced in a regular
grid covering L. Concerning the sensing model, we assume
wk ∼ N

(
0, σ2

w

)
, k ∈ K, with σ2

w = 1. Also, we consider
a power-law AAF g (xT , sk) , 1/

√
1 + (‖xT − sk‖/ 0.2)4.

The target signal-to-noise ratio (SNR) is defined as SNR ,
θ2/σ2

w. Herein, we set the true values as θ = 0.5 (SNR =
−3 dB), x0 = [0, 0.5]T , v = [0.02, 0.013]T and T = 20 in
the simulations to gain insight into detectors’ performance.

Following Sec. III, ΛR and ΛG are evaluated by means of
grids for x0, v and θ. Precisely, x0 and v are searched with
Nx0 = Nv = 100 grid points uniformly sampling L and
V , respectively. Differently, the search space of θ (the target
signal) is assumed to be Sθ , [−θ̄, θ̄] (θ̄ > 0). The grid
points10 are then chosen as

[
−gTθ 0 gTθ

]T
, where gθ collects

target strengths corresponding to SNR = −10 : 1 : 10 dB.
In Fig. 1 we show PD0

vs. PF0
of both G-Rao and GLRT

detectors for (a) Pe,k = Pe = 0 and (b) Pe,k = Pe = 0.1,
respectively (based on 105 Monte Carlo trials). For each
case, we report the performance with qk = q ∈ {1, 2, 3}
quantization bits, where thresholds are selected following the
rationale elaborated in Sec. IV (via PSO, with parameters
M = 100, τmax = 5 and νtol = 10−6). First, it is shown

8We remark that other approaches may be pursued, e.g. simulated annealing.
9Hereinafter, aiming at improved notation readability, we will omit the

sensor index subscript “k”.
10This grid implies Nθ = 43, hence a 43× complexity saving is achieved

by G-Rao w.r.t. GLR.
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Fig. 1. PD0
vs. PF0

for GLRT and G-Rao; WSN with K = 9 sensors,
wk ∼ N (0, 1), SNR = −3 dB, and (a): Pe = 0; (b): Pe = 0.1.

that the performance of the proposed G-Rao test is practically
the same as the GLRT, while having the advantage of a lower
computational burden with respect to the latter. Secondly, both
fusion rules enjoy a higher detection probability (than the one-
bit case) when using multi-bit quantizers.

Still, the presence of channel errors (in our example Pe =
0.1) leads to a significant performance loss of both detectors,
highlighting the need for either a higher number of sensors
(K) or a longer observation interval (T ). A deeper numerical
analysis will be brought out in the journal version of this paper.

VI. CONCLUDING REMARKS

We devised a G-Rao test for multi-bit DD of a non-
cooperative moving target in WSNs. The considered model
encompasses unimodal zero-mean symmetric noise, and non-
identical BSCs. Our proposal constitutes a simpler alternative
to the GLRT, while providing the same performance gains
achieved via multi-bit quantization (over a one-bit counter-
part). WSN performance was further optimized via the design
of PSO-based quantizers, maximizing the asymptotic detection
rate of TC Rao rule. Future avenues include the design of G-
Rao test for sequential [16] and censoring [24] setups.
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